

Machine Learning for STP Energy Forecasting

Dataset

Methodology

Metrics

Problem Statement

Literature Survey

Which problem at Plaksha?

Problem Statement

The energy consumption of the STP is a critical operational metric that directly impacts our operational costs and environmental footprint.

Gain insights into the factors affecting energy consumption.
Implement energy-saving strategies based on real-time predictions.
Reduce operational costs and minimize environmental impact.

Literature Survey

Fig: Methodology (B. Faramarz et al.,)(Paper 1: Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach

East Melbourne WWTP (2014-19) Weather station data

Findings:

- **1.** Positive correlation of energy consumption and weather data flow had the highest impact on the EC in Melbourne east WWTP. 3. GBM algorithm revealed the best performance for prediction among other algorithms showing its prediction power in nonlinear
- 2. TN, BOD, ammonia, daily temperature, humidity, and influent

- irregular patterns

Table 4 Summary of different studies on the WWTPs power consumption prediction using MI methods

Features	Prediction Algorithm	Performance metric	Remarks	Dataset	References
TN, TP, BOD, COD, T	LSLR	R ² _{Train} = 0.912	Air temperature and biological load had effective parameters on energy consumption. Prediction performance was not evaluated using a separate test set	Features were collected from 3 different points of the system consists of 95 series of measurements over 30 month	Żyłka et al. (2020)
Q _{inf} , T, BOD, TN,	RNN (GRU and LSTM)	RMβE = 509 kWh/day, MAE = 389.2	The presented model can be used in optimization scenarios to provide data-driven solutions for regular WWTP activity. R ² values were not provided.	Training data were collected daily from 2010 till 2017 and one year (365) records were used as a test dataset	Cheng et al. (2020)
pH, BOD, COD, SS, Chrom, TP, TN, NH3,	Bayesian semi-parametric quantile regression.	R ² = N/A	the highest relationship between the energy consumption with COD and BOD was observed. Regression analysis was done for 3 different energy consumption levels for investigating the effects of parameters on consumption. Energy prediction performance was not evaluated.	Daily records, 363 samples (from December 2015 to December 2016)	Yu et al. (2019)
COD, BOD, SS, NH4, T, Flowrate	DNN	R ² _{Test} = 0.74 RSR = 0.33-0.52	Pollution indicators are efficient estimators for the prediction and optimization of power consumption	A total number of 318 records were used from 2006 till 2016. Two selection steps, which significantly reduced the number of data points, were used before model building and testing. The final number of data points used was not given. 20 % of the selected data points were used for testing the models	Oulebsir et al. (2020)
				utilizing key performance indicators of WWTP	
COD, BOD, TP, TN, Flowrate,	ANN	$R^2_{Train} = 0.6 - 0.9$	Increasing the number of neurons doesn't necessarily improve the ANN	317 WWTPs using CAS technology, and located in northwest Europe.	Torregrossa et al. (2018)
	RF	$R^2_{Test} = 0.4 - 0.8$	models. In case of overfitting issues, RF had better results than ANN	The test dataset (112 records) was selected randomly from the database. Models were built for predicting yearly energy consumption.	/
Months, TN, NH ₄ -N, BOD, T _{max} , H, Pr, and Q _{inf}	GBM	R ² train = 0.53	TN, ammonia, BOD, temperature, humidity, and influent flow were among the highest correlated parameters with energy consumption of ETP based on three FS methods.	Nearly 1000 records of data from ETP Melbourne were collected after data engineering during the years (2014–2019). Dataset was a result of inner joining between weather, wastewater characteristics, and energy	This study
	RF ANN RNN	R^2 test = 0.18		consumption parameters. Models were built for predicting daily energy consumption.	

Total Nitrogen(TN), Total Phosphorus (TP), Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), Temperature (T), List Square Linear Regression (LSLR), Chlorine (Cl), Suspended Solids (SS), RMSE-observations standard deviation ratio (RSR), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Dense Neural Network (DNN), Gradient Boosting Machine (GBM), Random Forest (RF), Artificial Neural Network (ANN), Conventional Activated Sludge (CAS), Ammonia (NH₄-N), Maximum Temperature (T_{max}), Minimum Temperature (T_{min}), Average relative humidity (H), Total rainfall and/or snowmelt (Pr), Eastern Treatment Plant (ETP).

Paper 2: Review Paper on similar studies

OTHER STUDIES

Gap identified through literature survey:

Limited Indian Energy consumption prediction studies

Features/Dataset Preprocessing

Preprocessing

All data was present in undigtized physical registers, thus required extensive manual and image to table extractor programs

Use of an API to get relevant hour by hour weather data

Since all data was incremental, data was subjected to a difference operation with the value underneath it(on the spreadsheet)

Removal of factually wrong data

Preprocessing

Preprocessing

Correlation Heatmap							D					
-0.11	-0.09	-0.03	-0.84	-0.14	-0.12		-0.16	-0.09	-0.10	-0.14		
1.00	0.72		0.18	0.38	0.00		0.46	0.27	0.34	0.54		- 0.75
0.72	1.00	0.52	0.16	0.31	0.05		0.41	0.24	0.28	0.45		
	0.52	1.00	0.06	0.07	-0.03		0.06	0.00	0.03	0.11		- 0.50
0.18	0.16	0.06	1.00	0.11	0.24		0.25	0.13	0.16	0.21		- 0.25
0.38	0.31	0.07	0.11	1.00	-0.03			0.32	0.38	0.59		0.20
0.00	0.05	-0.03	0.24	-0.03	1.00		0.06	0.04	0.02	0.04		- 0.00
0.46	0.41	0.06	0.25	0.58	0.06		1.00	0.56	0.66	0.89		0.25
0.27	0.24	0.00	0.13	0.32	0.04		0.56	1.00	0.58	0.53		0.50
0.34	0.28	0.03	0.16	0.38	0.02		0.66	0.58	1.00	0.62		
0.54	0.45	0.11	0.21	0.59	0.04		0.89	0.53	0.62	1.00		0.75
Changeinoutflowreading(kiloliters)	Changeininflowreading(kiloliters)	Energy_consumed(Kilowatts)	Temp(Celsius)	Date	Timeofday	Airblower(On/Off)	Sewagefeedpump(On/Off)	SludgerecyclingPump(On/Off)	Dosingpump	Dosingpump(On/Off)	-	

Features

- Date(index)
- Hourly time
- Filters/pumps: Sewage feed pump, Sludge recycling pump, Dosing pump, Filter feed pump, air blower
- Inlet flow meter reading
- Outlet flow meter reading
- Energy meter reading
- Derived Features- Consumed Energy, Volume of inlet/outlet flow

Features

Sewage Feed Pump: designed to move sewage from one location to another within a sewage system

Sludge Recycling Pump: used to circulate or transfer sludge—a semi-solid byproduct of wastewater treatment—within a treatment system

Dosing Pump: delivers precise amounts of fluids, such as chemicals or additives, into a system at specific intervals or rates.

Filter Feed Pump: supplies liquid to a filtration system, ensuring a consistent flow of fluid through the filters to separate contaminants or particles from the liquid.

Dataset

Columns/Features: 15 Datapoints/Rows: 1416

Nethodology

Fig: ML Methodology - different algorithms evaluated for finding algorithm with best performance

Error Metrics

MSE - Mean Squared Error

RMSE- Root Mean Squared Error

R2- Coefficient of Determination:

$=rac{1}{n}\sum(Y_i-\hat{Y}_i)^2$

 $1 - \frac{\sum (Y_i - \hat{Y}_i)^2}{\sum (Y_i - \bar{Y}_i)^2}$

Artificial Neural Networks	Li
(ANNs) are a type of machine	fo
(Anno) are a type of machine	US
tearning model inspired by the	re
structure and function of the	de
human brain. Composed of	m
interconnected nodes (neurons)	
organized into layers, ANNs	
excel in learning complex	ha ha
patterns and relationships	
within data.	

Regression

near regression is a oundational statistical method sed for modeling the lationship between a ependent variable and one or ore independent variables. s primary goal is to nderstand and predict the ehavior of the dependent riable based on the dependent variables

LASSO Regression Random Forest LSTM

LASSO (Least Absolute Shrinkage and Selection Operator) Regression is a regularization technique used in linear regression analysis. It's employed for feature selection and regularization by penalizing the absolute size of the regression coefficients.

Random Forest is a popular machine learning algorithm used for both classification and regression tasks. It's an ensemble learning method based on the concept of decision trees, where multiple trees are built and aggregated to make predictions.

- LSTM, short for Long Short-Term Memory, is a type of
- recurrent neural network
 - (RNN) architecture designed
 - to address the limitations of traditional RNNs in capturing and learning long-range
 - dependencies in sequential data

=========] - 0s 12ms/step - loss: 0.0039

Deployability?

Thank You!

